

Project Configurator
Integration Toolkit

Developer Guide

© 2020 Adaptavist

© 2020 Adaptavist 2

Table of Contents

1 Introduction.. 4

1.1 Intended Audience .. 4

1.2 How this Guide is Organised ... 4

2 Why Create a PC Extension .. 5

2.1 About PC ... 5

2.2. Benefits of Creating an Extension ... 5

3 Types of PC Extensions .. 7

3.1 Workflows .. 7

3.2 Dashboard Gadgets .. 7

3.3 New Custom Entities ... 8

4 Common Features of Extensions ... 9

4.1 How to Implement Extensions ... 9

4.2 How to Identify a PC Extension ... 10

4.3 Version Compatibility .. 10

4.4 Maven Dependencies .. 12

4.5 Importing Packages .. 13

4.6 The Hollywood Principle .. 15

4.7 Welcome Lazy Developers! .. 16

4.8 How to Create Objects in an Extension .. 16

4.9 How to Inject PC Dependencies into Your Extension .. 18

5 Workflow Extensions .. 19

© 2020 Adaptavist 3

6 Dashboard Gadget Extensions ... 32

7 Custom Entity Extensions .. 41

7.1 Have a Logical Model of the Information you Want to Support ... 41

7.2 GlobalCustomEntity .. 43

7.3 Properties ... 47

7.4 Identifiers ... 53

7.5 ChildCustomEntity ...56

7.6 Child Collections ... 60

7.7 ExportTriggerProperty... 63

8 Hints for Testing PC Extensions... 65

8.1 Test the Actual Migration .. 65

8.2 Use the Object Dependencies Report .. 71

8.3 Pro Tip: Create the Extension in Two Stages ... 72

8.4 Use the Jira Log if Necessary ... 72
... .. 73

© 2020 Adaptavist 4

1 Introduction

1.1 Intended Audience

This guide is primarily aimed at developers who want to create or maintain extensions for Project Configurator (PC). The introductory sections may

also be useful for product managers who need to decide if and when to create these extensions.

Assumptions

If you are a developer reading this guide, it is assumed that you:

• are reasonably familiar with Java

• have some knowledge of how to create a P2 plugin for Jira

Previous experience with the problems that PC addresses (moving Jira configuration changes or projects between instances) or with PC itself, though

beneficial, is not required. In the following sections we explain these problems and how PC works in resolving them.

1.2 How this Guide is Organised

Section 2 is an overview of how PC solves the problem of transferring configuration changes or projects between Jira instances. It also explains how

writing an extension for PC will extend those benefits to the configuration and data of other apps. While this is a functiona l reference, it can also be

useful for product managers, consultants, or Jira Administrators.

Section 3 explains what types of extensions are available. This section is not solely for developers; anyone involved with configuring Jira will find it useful.

The remaining sections are more technical and written specifically for developers who will work to integrate other apps with PC:

• Section 4 discusses aspects common to any type of PC extension.

• Sections 5, 6, and 7 discuss workflow, dashboard gadget, and object type extensions respectively. Each contains an integration example with a

real app. These sections are complemented by the Javadoc for the "extension-spi" module, however it is best to start reading these three sections

and use the Javadoc as a reference.

• Section 8 discusses possible approaches when testing extensions.

© 2020 Adaptavist 5

We recommend that developers read at least sections 4 through 8, (skipping sections 6 or 7 if not interested in that type of extension). Sections 5, 6,

and 7 can also be used as reference material in parallel with the Javadocs while coding the first PC extension.

2 Why Create a PC Extension

2.1 About PC

PC is an app for Jira that automates the process of manually copying projects and configurations from one Jira instance to another. It allows users to

specify whether to export and import only specific project configurations or complete projects (configuration and data).

PC provides full migration support giving users the tools to:

• Move the configuration and/or data of projects between Jira instances

• Visualise what configuration objects will collide or cause errors when moving projects between instance

• Simulate an import to assess potential impact changes

• Merge projects from multiple smaller instances to a larger instance

• Plan and execute the splitting and organising of one massive Jira instance into smaller ones

• Enforce best practice in making changes in a staging instance before copying the changes to production

PC is able to handle not only the project-specific configurations but also global objects such as custom fields, schemes, and workflows that are referenced

in the project configuration. Other global objects that are not, strictly speaking, required for a project configuration such as filters, dashboards, and agile

boards can also be migrated.

2.2. Benefits of Creating an Extension

Because apps are a large and integral part of most Jira installations, it would be extremely useful if Jira Administrators could enjoy the same benefits

that PC offers for built-in objects when they are moving configurations or data that belong to the main apps they use in Jira.

© 2020 Adaptavist 6

The SPI that PC extensions should implement is designed in a declarative way. As an extension developer, you do not need to worry about all

those problems; you only have to express the structure of the information your app manages and the simple operations to create, update, or remove

each item. Let PC handle the rest of the export and import problems for you.

For example:

• They might configure an app in a staging environment and then automatically move those changes to production.

• They could have a group of projects which heavily depend on an app in a departmental Jira and then consolidate those projects transparently

into a corporate instance of Jira.

• They could find out which projects, workflows, or custom fields are using specific configuration items defined by the app.

All this can be achieved if a PC extension is created to support the app.

Benefits for the Extension Developer

Moving configuration and data to a different Jira instance requires solving several practical problems:

• How to express the content and structure of configuration and data in a way that can be transferred, especially relationships between different

objects

• How to map IDs and other instance-specific content to their corresponding values in other instances

• How to collect all items that are required by the projects the user wants to move, but not others that are not related

• What to do when the same items exist in the destination instance

• How to sequence changes in the destination to comply with dependencies among objects

• How to handle and report the myriad of possible errors and warnings

© 2020 Adaptavist 7

3 Types of PC Extensions

PC can be extended in three different ways:

3.1 Workflows

A Jira workflow may have conditions, validators, or post-functions that refer to other Jira objects, such as:

• Offer this transition only to members of group X (condition)

• Fail this transition if the user has not supplied a value for field Y (validator)

• After the transition, update field Z with value V in issues which are linked to this one by link type L (post function)

These workflow features create two challenges when moving the workflow to a different instance:

1. Often the workflow refers (internally) to fields Y, Z or link type L by their IDs. This means these references must be translated to the equivalent

IDs that are valid for the corresponding objects at the destination instance.

2. Any of these objects becomes a required part of the new configuration. It must be ensured that their description is extracted from the source

instance and that they will be created or updated at the destination.

PC already supports and handles conditions, validators, and post-functions defined in Jira "out of the box" plus the most popular workflow apps at the

Atlassian Marketplace, as explained in Specific Information for Some Object Types (see Conditions, Validators and Post-functions).

If it is necessary to support other workflow apps, then it's time to create a PC extension for workflows. This is quite simple; you only have to specify

where the references occur and what their content is (perhaps the ID of a field or the name of a group) and PC will take care of the rest. See section 5

for a detailed explanation of how to create a workflow extension for PC.

3.2 Dashboard Gadgets

When users configure dashboards in Jira, they will add gadgets to it. Each of these gadgets provides some functionality to the dashboard, for example,

displaying all issues returned by a filter or statistics for a given category of projects. The implication is that gadgets also contain references to other

objects in Jira (filters, fields, issue types, categories, projects, etc) and, as outlined in Workflows, these references must be handled appropriately

during export and import.

https://docs.adaptavist.com/pc/jira/server/latest/how-project-configurator-works/specific-information-for-some-object-types.html

© 2020 Adaptavist 8

These references are created when the user configures the gadget. For each gadget type, the users create a set of user preferences where they

specify, for example, from which project or filter the issues should be taken to create a graph, or by which fields to group a given statistic.

PC supports gadgets defined by Jira "out of the box". If you want to migrate gadgets defined in a third-party app to other Jira instances, then you

should use a PC extension for gadgets. The approach used to create these extensions is similar to that used workflow extensions. You only have to

specify where the references occur (which type of gadget and in which user preference) and their content.

Section 6 provides an in-depth explanation, with examples, of how to create PC extensions for gadgets.

3.3 New Custom Entities

Apps often define new types of entities that do not already exist in Jira, for example, ScriptRunner for Jira offers many convenient features including

Behaviours. Behaviours let you customise the behaviour of fields in the user interface.

A ScriptRunner behaviour is not a custom field, screen, or workflow; it is a completely new type of object that does not exist in Jira out of the box, and

only appears if ScriptRunner for Jira is installed in your instance.

In the same way, a test management app might introduce new types of objects like test cases, test plans, or test runs. For administrators that manage

different instances of Jira, the objects belonging to new types are part of the content they would like to migrate when they are moving configuration or

data between instances. Administrators will want to migrate the configuration of behaviours or their test management data to another instance and, if at

all possible, without lots of manual work or having to develop ad-hoc scripts.

Migrating these objects can become more challenging for different reasons:

• The structure of objects can be complex. In most cases, these objects have a number of relationships between them. For example, a test case

may be part of a test plan which, in turn, is used in a test run. A behaviour may reference a script and have some specific field configurations or

mappings to projects.

© 2020 Adaptavist 9

• This complexity extends beyond the boundaries of the app because there will be also relationships to/from objects defined by Jira itself. For

example, each field configuration of a behaviour applies to a field in Jira, a project uses some behaviours, or test cases derive from specific Jira

issues.

In cases like these, it is possible to leverage the power of PC to solve this complex problem if using a custom entity extension. These extensions make

custom entities, like those described in the examples above, available to PC.

With the right extension, PC is able to export and import those items, managing all their links with other objects in the app or in Jira. Even if this

problem is complex, the design of the SPI shields you from most of this complexity. As an SPI developer, you only need to implement the interfaces

that describe the structure of the entities they want to handle, in terms of how they are identified, and their properties (including references to other

objects). With this information PC can handle all the dependencies and perform all export/import operations required for a su ccessful migration.

Section 7 explains how to write a custom entity extension for PC walking through all the relevant aspects of the SPI.

4 Common Features of Extensions

In this section we address the technical aspects that are common to all three types of extensions: workflow, dashboard, and custom entity.

4.1 How to Implement Extensions

All the extensions are Java code to be deployed in Jira as a P2 Jira plugin (app). The extension can be an additional feature in an existing app or a

standalone app. For example, vendor of an app called "X" might develop a PC extension for the app as an added feature that either goes into the

same .jar, or into a separate .jar (called "X extension for Project Configurator") and then distributes it to the Marketplace alongside app "X". The same

P2 app can contain an arbitrary combination of workflow, dashboard, or custom entity extensions.

The first option has one technical advantage: it is easier to access and manipulate objects created by app X from the same app, than from a separate

one. In this second case, app X would need to export the packages and classes that provide that access/manipulation functionality, and app "X

extension for Project Configurator" would have to import and use them. The first option also offers a better, more frictionless user experience. End

users can see that by installing compatible versions of X and PC, migration simply works without having to do anything else. On the other hand, if the

extension is delivered in a separate app, the end user would have to install it (in addition to PC and X) in order to enable migration of content from X.

In favour of a separate app, if app X is already quite large in terms of project size, you may feel wary of adding a new feature to it.

© 2020 Adaptavist 10

<?xml version="1.0" encoding="UTF-8"?>

<atlassian-plugin key="${atlassian.plugin.key}" name="${project.name}" plugins-version="2">

<plugin-info>

<description>${project.description}</description>

<version>${project.version}</version>

<vendor name="${project.organization.name}" url="${project.organization.url}"/>

<param name="plugin-icon">images/pluginIcon.png</param>

<param name="plugin-logo">images/pluginLogo.png</param>

<param name="min-pc-version-supported">3.2.0</param>

</plugin-info>

<!-- add our i18n resource -->

<resource type="i18n" name="i18n" location="sample-extension-one"/>

4.2 How to Identify a PC Extension

All PC extensions will be identified by the key of the P2 app to which they belong.

4.3 Version Compatibility

All PC extensions must declare which version of PC they are compatible with. This is done by adding a parameter to the app's atlassian-plugin.xml file,

as shown below:

atlassian-plugin.xml

© 2020 Adaptavist 11

Note the min-pc-version-supported parameter. This will be interpreted as the extension in this app is compatible with PC version 3.1.11 or newer.

Version strings are compared as defined in the Semantic Versioning 2.0.0 specification.

This parameter is used to filter apps that contain PC extensions from those that do not. So, if this parameter is not added to the atlassian-plugin.xml

file, this app will not be treated as a valid extension by PC.

<!-- add our web resources -->

<web-resource key="sample-extension-one-resources" name="sample-extension-one Web Resources">

<dependency>com.atlassian.auiplugin:ajs</dependency>

<resource type="download" name="images/" location="/images"/>

<context>sample-extension-one</context>

</web-resource>

</atlassian-plugin>

https://semver.org/

© 2020 Adaptavist 12

...

<dependency>

<groupId>com.awnaba.projectconfigurator</groupId>

<artifactId>extension-spi</artifactId>

<version>${projectconfigurator.version}</version>

<scope>provided</scope>

</dependency>

...

...

<dependency>

<groupId>com.awnaba.projectconfigurator</groupId>

<artifactId>operations-api</artifactId>

<version>${projectconfigurator.version}</version>

<scope>provided</scope>

</dependency>

...

4.4 Maven Dependencies

Your app will need access to the extension-spi jar to use all the interfaces and classes described in this document. Add this dependency to your

pom.xml file:

pom.xml

Some extensions will have to use also the class ObjectAlias, which is defined in a different jar (operations-api). In rare cases, extensions might require

other classes from this same jar. In any of these cases, add the following dependency:

pom.xml

© 2020 Adaptavist 13

4.5 Importing Packages

As defined in the dependencies in section 4.4, the extension will need to use some packages provided by Project Configurator. These will be available

through OSGI. Functionally speaking, it would be inconvenient if the extension had to resolve those import packages when it is installed, as there is no

guarantee that Project Configurator will be installed in Jira before the extension. The most sensible thing would be that those packages are imported

when they are actually needed (this means when an export or import is going to be run by PC). From the OSGI point of view this implies that those

packages must be declared as "DynamicImport-Package" and not as "Import-Package".

Where to find the .jar files

Both jars, including their javadoc, are published to the following URLs:

https://nexus.adaptavist.com/content/repositories/external/com/awnaba/projectconfigurator/extension-spi/

https://nexus.adaptavist.com/content/repositories/external/com/awnaba/projectconfigurator/operations-api/

https://nexus.adaptavist.com/content/repositories/external/com/awnaba/projectconfigurator/extension-spi/
https://nexus.adaptavist.com/content/repositories/external/com/awnaba/projectconfigurator/operations-api/

© 2020 Adaptavist 14

This would be specified in the pom.xml file as:

pom.xml

<build>

<plugins>

<plugin>

<groupId>com.atlassian.maven.plugins</groupId>

<artifactId>jira-maven-plugin</artifactId>

<version>${amps.version}</version>

<extensions>true</extensions>

<configuration>

.....

<!-- See here for an explanation of default instructions: -->

<!-- https://developer.atlassian.com/docs/advanced-topics/configuration-of-instructions-in-atlassian-plugins -->

<instructions>

.....

<!-- Add package import here -->

<Import-Package> org.springframework.osgi.*;resolution:="optional",

org.eclipse.gemini.blueprint.*;resolution:="optional",

https://developer.atlassian.com/docs/advanced-topics/configuration-of-instructions-in-atlassian-plugins

© 2020 Adaptavist 15

Remember, "Don't call us; we'll call you!".

4.6 The Hollywood Principle

Creating an extension consists of implementing some of the interfaces which are defined in the extension-spi-XXXX.jar. You do not have to call the methods

offered by those interfaces. PC will call them at the right times during the export or import operations.

<!-- Note the packages from PC must be in DynamicImport-Package,

so the following exclusion is added here -->

!com.awnaba.projectconfigurator.*,

*

</Import-Package>

<!-- Packages from Project Configurator must be imported dynamically to allow

the extension to interact with them, even if PC is installed later -->

<DynamicImport-Package>

 com.awnaba.projectconfigurator.*

</DynamicImport-Package>

.....

© 2020 Adaptavist 16

4.7 Welcome Lazy Developers!

In addition to the Hollywood Principle, you do not have to create all of the objects those methods return. PC offers you some components that act as

factories that create many of those objects. These factories are:

Factory Types it will create

extensionservices/ReferenceMarkerFactory common/ReferenceMarker

extensionservices/TranslatorFactory common/ParamValueTranslator

customentities/references/ObjectReferenceProcessorFactory customentities/references/ObjectReferenceProcessor
customentities/references/MultiObjectReferenceProcessor

customentities/IdentifierFactory customentities/PartialIdentifier

customentities/InstanceIndependentIdentifier

Table 1

4.8 How to Create Objects in an Extension

The lifecycle of objects an extension that implements the interfaces described in this document is very important for a smooth user experience. If their
creation is triggered before PC in installed in Jira, that would crash with a Java ClassNotFoundException, since those interfaces would not yet be
available. On the other hand, we need those objects to have already been created when the export or import is running.

The SPI, and the framework that uses it in PC, are designed so that you can satisfy that lifecycle requirement following very simple guidelines,

leveraging the power of the Atlassian Spring Scanner.

You only need to annotate those classes to associate them with a dynamic application context. This context will be started when extensions are

required by PC (when export, import, or reporting operations are being run by PC), so that those Spring beans are instantiated only when they are

needed, and PC is guaranteed to be present and working at that moment.

© 2020 Adaptavist 17

@Profile("pc4j-extensions")

@Component

public class MyGadgetHookPoint implements GadgetHookPoint {

....

 As this is a development within the context of a P2 Jira app, it is assumed that the extension app is using Spring and Atlassian Spring Scanner version 2.

Classes in the extension must be linked to the application context identified by pc4j-extensions, as shown in this code example.

More precisely, classes implementing the following interfaces must be available as Spring beans within the context pc4j-extensions:

• HookPointCollection

• GlobalCustomEntity

• ChildCustomEntity

The rest of classes in the extension may be Spring beans or not.

© 2020 Adaptavist 18

@Profile("pc4j-extensions")

@Component

public class FooWorkflowExtensions implements HookPointCollection {

...

private TranslatorFactory translatorFactory;

@Inject

public FooWorkflowExtensions(@ComponentImport TranslatorFactory translatorFactory) {

 this.translatorFactory=translatorFactory;

...

}

...

}

4.9 How to Inject PC Dependencies into Your Extension

The PC extension will need to get an instance of the factory interfaces mentioned above.

The implementations of these factories are available as Spring components. The usual methods of injecting a dependency in a component in Spring

are sufficient. For example:

© 2020 Adaptavist 19

Example source code

The complete source code for this example is available at https://bitbucket.org/Adaptavist/example-workflow-extension/src/master/.

5 Workflow Extensions

Are you interested in using Project Configurator to migrate workflows that contain conditions, validators or post-functions defined by a third-party app?

Let's discover how easily this can be achieved.

Step 0: Check if the workflow app is already supported

First navigate to the list of supported workflow plugins. This list includes the most popular Jira apps for workflows and there are new additions to it from

time to time. If your third-party app is already supported, then you do not need to create a new extension and can start moving workflows that use this

app immediately.

If the app is not supported, follow the next steps with the help of an example, based on the app Workflow Essentials for Jira.

Step 1: Create the workflow feature and export its XML descriptor

Install the third-party app in the Jira instance you will use to develop and test the extension, then create a workflow that has the conditions, validators,

or post-functions (collectively, workflow functions) that you want to support with Project Configurator. In this guide, we focus on:

• Assign a specific user post-function

• Date Compare condition

https://bitbucket.org/Adaptavist/example-workflow-extension/src/master/
https://docs.adaptavist.com/pc/jira/server/latest/how-project-configurator-works/specific-information-for-some-object-types.html#_conditions_validators_and_post_functions
https://marketplace.atlassian.com/apps/1214892/workflow-essentials-for-jira?hosting=server&tab=overview
https://codecentric.atlassian.net/wiki/spaces/WE/pages/34635784/Validators#Validators-UserInGroupValidator
https://codecentric.atlassian.net/wiki/spaces/WE/pages/34635787/Post%2BFunctions#PostFunctions-AssignaspecificUser
https://codecentric.atlassian.net/wiki/spaces/WE/pages/52035609/Conditions#Conditions-DateCompareCondition

© 2020 Adaptavist 20

Add them to a workflow:

Figure 1

Depending on the complexity of the chosen workflow function, it may be a good idea to create more than one instance of each to cover cases when

the function can be configured in different ways. In the case of the Date Compare condition, you can see that it can work both with system or custom

fields, and that it can handle a time expression or the current date and time. It is therefore better to create two instances of this condition to cover those

cases.

Figure 2

© 2020 Adaptavist 21

@Profile("pc4j-extensions")

@Component

public class WES4JExtensionModule implements HookPointCollection {

}

Once you have the workflow with the desired functions, export it from Jira as XML.

Figure 3

Open the XML file with your preferred editor and navigate to the section of the XML where the functions are defined.

Step 2: Implement interface HookPointCollection

Unless your extension already has another implementation of com.awnaba.projectconfigurator.extensionpoints.common.HookPointCollection, to which

you can add the extensions for these workflow functions, create a new instance of this interface:

Implementing HookPointCollection

© 2020 Adaptavist 22

<condition type="class">

<arg name="EVALUATION_EXPRESSION">+7d</arg>

<arg name="OPERATOR">></arg>

<arg name="FIELD_ID">duedate</arg>

<arg name="SELECT_DATE_COMPARE_OPTION">VARIABLE_EXPRESSION</arg>

<arg name="class.name">de.codecentric.jira.condition.DateComparisonCondition</arg>

</condition>

Step 3: Implement the workflow extensions

a. Date Compare condition

Analyze

Examine the workflow functions in the exported XML file. For example, start with the Date Compare condition. Looking in the XML, you will find the two

occurrences of this condition:

First occurrence of the "Date Compare condition"

https://codecentric.atlassian.net/wiki/spaces/WE/pages/52035609/Conditions#Conditions-DateCompareCondition

© 2020 Adaptavist 23

<condition type="class">

<arg name="EVALUATION_EXPRESSION"></arg>

<arg name="OPERATOR">></arg>

<arg name="FIELD_ID">10101</arg>

<arg name="SELECT_DATE_COMPARE_OPTION">CURRENT_DATETIME</arg>

<arg name="class.name">de.codecentric.jira.condition.DateComparisonCondition</arg>

</condition>

Second occurrence of the "Date Compare condition"

Looking at this part of the workflow descriptor, you see that the argument "FIELD_ID" can contain either the name of a system field ("duedate") or the ID

of a custom field ("10101").

Next, consider the following: Will this argument need to be changed for a successful migration? If, yes, it has to be changed whenever a custom field

is used, as the custom field used by this condition will likely have a different ID at a different Jira instance. As this argument might require being

changed ("translated") in some cases for its correct migration to a different instance, you have to create an implementation of the

com.awnaba.projectconfigurator.extensionpoints.workflow.WorkflowTranslationPoint i nterface. Create a method with this return type

in the class created in step 2.

© 2020 Adaptavist 24

@Profile("pc4j-extensions")
@Component
public class WES4JExtensionModule implements HookPointCollection {

 public WorkflowTranslationPoint getDateCompareConditionHookPoint() {

}

}

Implementing HookPointCollection

The other possibility is that this arg refers to a system field, like "duedate". A system object is completely transparent from the point of view of moving

this workflow to another instance, as we expect all Jira instances to have that system field. This means you do not have to consider whether the system

field exists or not, or if it has to be created before the workflow.

There are no other references to other entities in Jira, so when you implement support for the "FIELD_ID" argument, you are finished with this condition.

The default action for PC when a workflow is migrated is to transfer it to the other instance as it is; for all other elements in the condition that do not

reference entities in Jira, you do not need to do anything.

25

//condition[arg[@name='class.name' and
 (text()='de.codecentric.jira.condition.DateComparisonCondition')]]/arg[@name='FIELD_ID']/text()

Don't know XPath? No problem!

If you are not familiar with XPath, don't be concerned that you will have to learn an arcane piece of technology. As you will see, all the XPath
expressions that you need to cover all your workflow support needs are essentially the same one, just with different values for the 'class.name' or
'name' attributes for the args, and then applying them for condition, validator, or function elements.

Have a look at another example!

Define location

In order to create the WorkflowTranslationPoint, you have to provide information about the location within the workflow descriptor of the string

that this extension is dealing with. In this case, the location of this string may be described as "the text node under an 'arg' element that has an

attribute called 'name', equal to 'FIELD_ID' under a 'function' element that has another 'arg' with attribute 'name' equal to 'class.name' that is equal to

'de.codecentric.jira.condition.DateComparisonCondition'.

This description must be provided as an XPath v1 expression that identifies this location:

XPath expression

Define the content of the reference

You must specify the content of the string. We know the string contains either the internal name of a system field or the numeric ID of a custom field.

As discussed before, when a system field is present, we can simply ignore it, as it is not necessary to do anything with it in the migration.

The content of the string handled by this extension point is specified by the method, ParamValueTranslator getTranslator() in

WorkflowTranslationPoint. Except for very specific cases, you do not need to create a ParamValueTranslator yourself, as there is a component,

the TranslatorFactory, that creates these objects. If you browse the Javadoc for this factory class, you will see there is a method

ParamValueTranslator fromOption(TranslateOption option) that returns one among a set of built in ParamValueTranslator(s).

© 2020 Adaptavist

© 2020 Adaptavist 26

ParamValueTranslator choiceOf(ParamValueTranslator trueTranslator, ParamValueTranslator falseTranslator,

Predicate<String> importSelector, Predicate<String> exportSelector);

Many workflow plugins reference fields in a slightly different way to the one seen here, using the ID string provided by Field.getId(). This produces

the same strings shown here, with the only difference that a custom field would be identified by "custom field_10101" instead of "10101". For those cases there is

already a built-in translator that handles the overall case, both for system and custom fields:

translatorFactory.fromOption(TranslatorFactory.TranslateOption.FIELD_STRING_ID)

 Here are two possible values for TranslateOption:

• CUSTOM_FIELD_ID: handles a numeric custom field ID

• VOID_TRANSLATOR: handles any string that does not reference any object, so this would serve us when a system field is referenced, as the

system field can safely be ignored during the migration.

Next, you must specify that one of the two translators describes the string content depending on whether the field is a system field or custom.

TranslatorFactory has this method:

that expresses that: a string that can be described by two different translators depending on a boolean condition.

© 2020 Adaptavist 27

Now, this can be expressed in code as:

Implementing a WorkFlowTranslationPoint

public WorkflowTranslationPoint getDateCompareConditionHookPoint() {

ParamValueTranslator translator = translatorFactory.choiceOf(
 translatorFactory.fromOption(TranslatorFactory.TranslateOption.VOID_TRANSLATOR),
 translatorFactory.fromOption(TranslatorFactory.TranslateOption.CUSTOM_FIELD_ID),
 this::isSystemCustomFieldId, this::isSystemCustomFieldId);

 return new WorkflowTranslationPointImpl(
 translator,
 "//condition[arg[@name='class.name' and
(text()='de.codecentric.jira.condition.DateComparisonCondition')]]/arg[@name='FIELD_ID']/text()"
);

}

private boolean isSystemCustomFieldId(String fieldId) {
 Field field = fieldManager.getField(fieldId);
 return (field != null) && !fieldManager.isCustomField(field);
}

© 2020 Adaptavist 28

Congratulations!

You have created your first extension point for workflows. With it, any instance of the Date Compare Condition from Workflow Essentials for Jira can now be migrated in

an easy and safe way to another Jira instance.

Code Notes

• WorkflowTranslationPointImpl is a convenience class that facilitates creating implementations of WorkflowTranslationPoint.

• Method TranslatorFactory.choiceOf(...) takes as arguments the translators to use in each case and two predicates. The second predicate

(exportSelector) will be applied to the internal string (that is the FIELD_ID arg shown in this example) when exporting, to decide in which of the two

cases the internal string fits in. In the same way, the first predicate (importSelector) will be applied to a previously exported string, during the import,

in order to decide which of the two translators should be used. It is a good idea to base these predicates on an invariant, something that does not

change in all the export-import process. In this way , you do not have to worry about the differences between the internal and the external (exported)

string and the same predicate will be valid for both import and export. In this example, as the references to system fields will not be changed or even

subject to any particular processing, both predicates are the same one, based on checking if the string is the ID of a system field.

© 2020 Adaptavist 29

...

<function type="class">

<arg name="full.module.key">de.codecentric.jira.wesset-assignee-to-specific-user-function</arg> <arg

name="USERNAME_VALUE_FIELD">jsmith</arg>

<arg name="class.name">de.codecentric.jira.postfunction.SetAssigneeToSpecificUserPostFunct ion</arg>

</function>

b. Assign specific user post-function

Let's look at the post-function, which will be the second extension to implement.

Analyze

This is an occurrence of this post-function inside a workflow descriptor:

“User in group validator” in the workflow descriptor

You can see that the only reference to other entities in Jira is a username. Your first thoughts may be:

"Wait a minute, I expect the username to be the same at the source and target instances, so it is not necessary to change anything here. What's more,

as Project Configurator's default behaviour is to migrate anything in the workflow descriptor as it is, I do not need to create an extension point for this

post-function, right?"

It is absolutely true that nothing needs to be changed and that if you do not create an extension point for this post-function, the workflow will be

migrated correctly in most cases. However, imagine user jsmith exists at the source instance but not at the target. In this case, the workflow will be

migrated with a formally valid descriptor, but this validator would be referencing a user that does not exist. This is somewhat inconsistent, and it could

mean that this post-function does not work as expected. It will likely fail when this transition takes place. If you instead create an extension point for

this post-function, then Project Configurator will help the Jira admin to manage this situation:

• When a user displays PC's Object Dependencies Report it will show that this user is referenced in that workflow.

• The user will be exported whenever this workflow is exported.

• When importing this configuration, Project Configurator will ensure that the user is created before the workflow or report the problem

otherwise.

© 2020 Adaptavist 30

//function[arg[@name='class.name' and
(text()='de.codecentric.jira.postfunction.SetAssigneeToSpecificUserPostFunction')]]/arg[@name='USERNAME_VALUE_FIELD']/text()

To achieve these benefits, you need to create an implementation of WorkflowReferencePoint. This is similar to what we did with the Date
Compare condition, so let's dive in.

Define location

As in any workflow extension, you have to specify the location of the reference string within the descriptor as an XPath:

XPath expression

Notice how the structure of this XPath location is similar to the one used for the previous condition.

Define the content of the reference

In this case, the reference consists of a single username. References to strings that do not have to change during the migration process are
represented by instances of the ReferenceMarker interface. As with ParamValueTranslator, you do not have to implement
instances of ReferenceMarker, but there is a ReferenceMarkerFactory, which is available in the Spring context, that should be used to create
them.

Looking at ReferenceMarkerFactory, you can see it has method, fromOption(ReferenceOption option) to get one of a group of built-

in ReferenceMarker i nstances.

© 2020 Adaptavist 31

public WorkflowReferencePoint getAssignSpecificUserHookPoint() {

return new WorkflowReferencePointImpl(

referencemarkerFactory.fromOption(ReferenceOption.USERNAME),

 "//function[arg[@name='class.name' and

(text()='de.codecentric.jira.postfunction.SetAssigneeToSpecificUserPostFunction')]]/arg[@name='USERNAME_VALUE_FIELD']/text()"

);

}

Now test it!

Your second workflow extension is completed now. Congratulations again!

Refer to the tips at the end of this document for ideas on how to test this extension.

Looking at the available ReferenceOption, you will find there is one to handle a username:

Figure 4

Combining both things in the extension code, you should add the following method to WES4JExtensionModule class:

Implementing a WorkflowTranslationPoint

© 2020 Adaptavist 32

Example source code

The complete source code for this example is available at https://bitbucket.org/Adaptavist/example-gadget-extension/src/master/.

6 Dashboard Gadget Extensions

To explain how to create an extension for dashboard gadgets, we will base this on an example using the Show Saved Filter with Columns for Jira

plugin, and its Show Saved Filter with Columns gadget.

Step 1: Create the gadget feature and export it with PC

First create an example of a gadget in a dashboard in Jira, configuring it as required. The screenshot below shows an example configuration.

Figure 5

https://bitbucket.org/Adaptavist/example-gadget-extension/src/master/
https://marketplace.atlassian.com/apps/5228/show-saved-filter-with-columns-for-jira

© 2020 Adaptavist 33

<dashboards>

<dashboard>

<default>false</default>

<owner>admin</owner>

<name>Test dashboard</name>

Next, export a configuration with PC that includes the dashboard. Bear in mind that Project Configurator does not export dashboards as a default, so

you have to select the export option that exports the dashboard you created as a sample.

Go to the Dashboards Options drop-down menu in the Export Projects page and select an option that is appropriate for your case. In the example

below, we have chosen to export all dashboards, which guarantees all dashboards in this instance will be exported (even private ones):

Figure 6

Once this configuration is exported, open the created XML file with an editor of your preference and locate the gadget description. There is a

Dashboards element in the file that contains all exported dashboards, that contains several dashboard elements. Each of these will have several

gadget items. It is easy to identify a dashboard by its name and owner, or as the default dashboard (system dashboard). You will see something

similar to the following:

Section of XML file exported by Project Configurator

© 2020 Adaptavist 34

<description>Dashboard with sample gadget</description>

<layout>AA</layout>

<gadget>

<type>rest/gadgets/1.0/g/com.ja.jira.plugin.searchrequest:sswc-gadget/gadget_wc.xml</type>

<column>0</column>

<row>0</row>

<color>color1</color>

<parameter>

<key>columnNames</key>

<value>issuetype@@issuekey@@summary@@priority</value>

</parameter>

<parameter>

<key>filterId</key>

<value>10000</value>

</parameter>

<parameter>

<key>isConfigured</key>

<value>true</value>

</parameter>

<parameter>

<key>num</key>

© 2020 Adaptavist 35

<value>10</value>

</parameter>

<parameter>

<key>refresh</key>

<value>120</value>

</parameter>

<parameter>

<key>showActions</key>

<value>true</value>

</parameter>

<parameter>

<key>sortBy</key>

<value></value>

</parameter>

<parameter>

<key>sortByGlobal</key>

<value>true</value>

</parameter>

<parameter>

<key>title</key>

<value>Project PDLF filter</value>

© 2020 Adaptavist 36

Notice how each gadget has several parameters that represent how you configured the gadget at Jira user interface, setting preferences like the filter,

the number of results to display, and the refresh period.

Step 2: Implement interface HookPointCollection

This step is the same as the example in Workflow Extensions. It is even possible to have workflow and gadget extensions within the same instance of

HookPointCollection!

Step 3: Implement the gadget extension

Analyze

First check which of the parameter elements in your gadget contain references to other entities in Jira. As with workflows, you have to specify how

these references can be found in the configuration for dashboards and what their content is. In this example, you can find two references:

• A parameter with key "columNames" that is a list of field identifiers

• A parameter with key "filterId"

Parameter "columNames" can be ignored. This appears in many gadgets and it is already handled by Project Configurator as standard.

Focus on parameter "filterId". If you check the filter set up during dashboard configuration, you will notice this parameter contains a string with the
internal Jira ID for the selected filter. This means that this parameter will have to be translated to a different ID for a successful migration. This implies
you will implement this extension as a GadgetTranslationPoint. If this parameter contained a reference to another entity that never requires a
translation, then you would use a GadgetReferencePoint.

Define location

To identify a gadget extension point, you must specify two things:

• The type of gadget where it appears

</parameter>

</gadget>

</dashboard>

© 2020 Adaptavist 37

...

<gadget>

<type>rest/gadgets/1.0/g/com.ja.jira.plugin.searchrequest:sswc-gadget/gadget_wc.xml</type>

<column>0</column>

...

• In which of the user preferences / parameters it appears for that gadget type

If you look at the GadgetHookPoint i nterface, which is the common ancestor of interfaces GadgetTranslationPoint and
GadgetReferencePoint, you will notice it has these methods:

com.atlassian.plugin.ModuleCompleteKey getModuleKey()

String getTypeURIString()

String getParamKey()

One of the first two methods will be used to identify the gadget type, in most cases the second one getTypeURIString(). In this example, looking at
the XML file with the dashboard description, you will notice the gadget element has a child element <type>:

Gadget type

This means the gadget type is identified by its URI (otherwise it would contain a child <completeModuleKey> element). Use the text of the <type>
element as return value for the getTypeURIString() method of the associated GadgetTranslationPoint.

© 2020 Adaptavist 38

public GadgetTranslationPoint getSSSCGadgetFilterHookPoint() {

return new GadgetTranslationPointImpl.Builder().
withTranslator(translatorFactory.fromOption(TranslatorFactory.TranslateOption.FILTER_ID)).

withUri("rest/gadgets/1.0/g/com.ja.jira.plugin.searchrequest:sswc-gadget/gadget_wc.xml").

withParamKey("filterId").build();

}

Define the content of the reference

This is described the same way as with workflow extensions. Navigate to the available predefined TranslateOption values that describe built in
translators and identify one that handles a filter ID:

Figure 7

Combining the location and reference content, you define the GadgetTranslationPoint. It could similar to the

following:

Implementation of GadgetTranslationPoint

© 2020 Adaptavist 39

Remember to add this as a method of the class you created in step 2, so you will have:

Complete implementation HookPointCollection

package com.adaptavist.projectconfigurator.ssscextension;

import com.atlassian.plugin.spring.scanner.annotation.Profile;
import com.atlassian.plugin.spring.scanner.annotation.imports.ComponentImport;
import com.awnaba.projectconfigurator.extensionpoints.common.HookPointCollection;
import com.awnaba.projectconfigurator.extensionpoints.extensionservices.ReferenceMarkerFactory;
import com.awnaba.projectconfigurator.extensionpoints.extensionservices.TranslatorFactory;
import com.awnaba.projectconfigurator.extensionpoints.gadget.GadgetTranslationPoint;
import com.awnaba.projectconfigurator.extensionpoints.gadget.GadgetTranslationPointImpl;
import org.springframework.stereotype.Component;

import javax.inject.Inject;

@Profile("pc4j-extensions")

@Component

public class SSSCExtensionModule implements HookPointCollection {

private TranslatorFactory translatorFactory;

private ReferenceMarkerFactory referenceMarkerFactory;

© 2020 Adaptavist 40

And that's it!

You have now completed an integration of this gadget type with Project Configurator.

@Inject
public SSSCExtensionModule(@ComponentImport TranslatorFactory translatorFactory,

@ComponentImport ReferenceMarkerFactory referenceMarkerFactory {

this.translatorFactory = translatorFactory;

this.referenceMarkerFactory = referenceMarkerFactory;

}

public GadgetTranslationPoint getSSSCGadgetFilterHookPoint() {

return new GadgetTranslationPointImpl.Builder().

withTranslator(translatorFactory.fromOption(TranslatorFactory.TranslateOption.FILTER_ID)).

withUri("rest/gadgets/1.0/g/com.ja.jira.plugin.searchrequest:sswc-gadget/gadget_wc.xml").

withParamKey("filterId").build();

}

}

© 2020 Adaptavist 41

Example source code

The complete source code for this example is available at https://bitbucket.org/Adaptavist/example-custom-entities-extension/src/master.

7 Custom Entity Extensions

We will use an example integration with the Profields app by Deiser, to help explain the concepts behind this type of extension. To limit the

complexity of the example, we will assume the following simplifications:

• The example will be focused on handling Profields belonging to four different types, layouts, and their relationship with projects.

• Working "as if" a layout could be associated to just one project.

• Using a slightly simplified model of the inner structure of a layout. We will only maintain the order of sections in a layout, but not the order of

containers in a column, or of fields items inside a container. We expect, however, that the part of the example that manages ordering of

sections will make it easier to implement a similar solution for containers or field items.

7.1 Have a Logical Model of the Information you Want to Support

Remember that implementing an extension to migrate a new kind of object that does not already exist in Jira (before your app is installed), consists

primarily of declaring the structure of those objects. In a second stage, it involves implementing the operations to create, update, and, in some cases,

delete those objects.

Focusing on the structure of the data, you should be able to answer questions like these:

1. Which types of entities will be supported?

2. Which of these are parts of bigger entities and cannot exist independently?

3. Which properties should be migrated for each entity?

4. Which of these properties represent a reference to other entities?

5. A Jira admin using PC will move the configuration and/or data for one or several projects. In these situations, which items of your app should

move with those projects?

https://marketplace.atlassian.com/apps/1210816/profields-jira-project-tracking?hosting=server&tab=overview

© 2020 Adaptavist 42

The answer to each of these questions maps directly to concrete parts of the SPI. Do not be concerned if the precise answers are unclear now; we will

revisit them in greater detail later in this document.

As a practical tip, before starting to create a custom entity extension, it is worthwhile creating a map of the entities to be extended with a content similar

to a data model diagram. Include each entity, annotate it with its properties (maybe with a brief note of what each property means) and draw relations

between entities whenever a property in an entity references another entity. Also include use relations to/from built-in entities in Jira (projects, custom

fields, workflows, etc.) Using the Profields example, in a style similar to an E-R diagram will result in this model:

Figure 8

© 2020 Adaptavist 43

CustomEntity is the main abstraction in any app extension. Each instance of CustomEntity represents the common properties of the set of
objects that belong to the same type/entity defined by the Profields app. In this example, we can see that there are five entities to be represented:

• Layout

• Section

• Container

• Field item

• Profield

The next step is to decide for each entity if it represents objects that can exist on their own, or if they can only appear as part of other objects.

7.2 GlobalCustomEntity

Some objects in Jira exist independently of other objects. For example, a project may exist without being part of anything else in Jira. The same

applies to the object types represented in a PC extension. If objects of a given type can exist on their own, then they are instances of a

GlobalCustomEntity.

In some cases, it might be a matter of discussion for two related objects whether A uses B, or B uses A. We recommend following these patterns to

make a decision:

• If for example, A contains a property, field, or attribute that is an identifier for B, but B does not contain a similar field/attribute with an

identifier for A, we should say that "A uses B" or "A references B".

• If A requires object B to be properly configured, or to be useful in the normal operation of Jira, then we should consider that "A uses B". For

example, a project must have a workflow scheme (even if it is the default one) in order to create issues, transition them, etc. On the other

hand, a workflow scheme can exist even if no project is linked to it. Most people will consider that projects use workflow schemes, not the

other way around.

• Think of how a typical Jira administrator would view the relationship. Try to model it in the way that will make most sense to this typical user.

This is important, as it will make the user experience clearer and more intuitive.

© 2020 Adaptavist 44

@Profile("pc4j-extensions")

@Component

public class LayoutEntity implements GlobalCustomEntity<Layout> {

....

@Profile("pc4j-extensions")
@Component

public class ProfieldEntity implements GlobalCustomEntity<Field> {

...

In this example, it is clear that both a layout and a "Profield" can be created without being inside any other object defined in the app, so their entities
must be instances of GlobalCustomEntity:

Entity for Layouts

Entity for Profields

Note that GlobalCustomEntity has a type parameter that must be the Java class used to represent objects belonging to this entity, in these

two cases com.deiser.jira.profields.api.layout.Layout and com.deiser.jira.profields.api.field.Field.

© 2020 Adaptavist 45

@Override
public Layout createNew(ObjectDescriptor objectDescriptor) {

Map<String,Object> properties = objectDescriptor.getProperties();

LayoutBuilder builder = layoutService.getLayoutBuilder();
builder.setName((String)properties.get(nameProperty.getPropertyName()));
builder.setDescription((String)properties.get(descriptionProperty.getPropertyName()));
return layoutService.create(builder);

}

Names for the Custom Entity

Each CustomEntity has a name given by getTypeName(), which must be unique among all the CustomEntity objects belonging to the
same app, and must not contain a colon.

Given these restrictions, concatenation of the app key, a colon, and the custom entity name will yield a name for the custom entity which is unique

among all PC extensions that could be installed in a Jira instance. There is also a set of unique names for Jira built-in types, which are defined

in com.awnaba.projectconfigurator.operationsapi.ObjectAlias, therefore there is a globally unique name for any entity whether

built-in or part of a PC extension.

Creating New Objects

Any custom entity must define a method to create new objects of its type.

Creating New Layouts

© 2020 Adaptavist 46

This method receives an ObjectDescriptor. This is an object that contains all information relevant to the object about to be created. It has a map

that contains internal values for all its properties keyed by the property names.

Configuration or data

Any GlobalCustomEntity has a boolean property that specifies if the object is part of the configuration or the data.

Consider two Jira instances. In one scenario, both are production instances and you want to move a project from one instance to the other

(perhaps the line of business associated to that Jira project was sold to another company). In that case, the entire project, both its configuration

(issue types, workflows, schemes, etc.) and its data (issues, attachments, comments) will be moved to the new instance.

In a different scenario, the destination instance is a production one and the source instance is for testing, where different changes to the project

(perhaps to support new business processes) are being tested and validated by users. In this case, only the project configuration will be moved, as

only those changes were made in testing and nobody would want to overwrite the live data in production.

Examining these scenarios will help you determine if a given object type must be moved in a configuration-only migration or not. PC supports both

modes: migrating configuration only or configuration and data. If nothing is specified, as a default, global entities are considered to be configuration

items (not data).

Note: In the current version of the integration framework, this property is ignored and all entities are treated "as if" they are part of the configuration. If

you need to support different treatments for your data and configuration entities, please contact us through our support portal.

https://productsupport.adaptavist.com/servicedesk/customer/portal/37/user/login?destination=portal%2F37
https://productsupport.adaptavist.com/servicedesk/customer/portal/37

© 2020 Adaptavist 47

@Override
public Collection<Property<Layout,?>> getProperties() {

return Arrays.asList(nameProperty, descriptionProperty, layoutProjectsProperty);
}

7.3 Properties

A property is any attribute of an object that users want to migrate to a different instance of Jira.

Any CustomEntity has a method Collection<Property<T,?>> getProperties(), that returns the properties of the entity that must

be handled in the migration process. Usually, users will want to migrate persistent, visible properties of the objects. For example, they will not

want to migrate IDs (not visible to users, not persistent across instances) or volatile information like cached results of a filter.

Returning to the Profields example, these properties can be associated to a Layout:

• Name

• Description

• The project it is associated to

So, a LayoutEntity defines this method:

Properties

A Property for the Description

Let us look into the property that represents the description.

Property is the top interface that represents any kind of property. It is generic with two types of parameters. The first represents the class of the owning

object and the second is the type of internal values of this property. The internal value is found when getting the value of that property within Jira. It

could be a variety of things: a string for properties like a description, a date, number, or even another object like an issue or a workflow. Imagine, for

© 2020 Adaptavist 48

example, that a relevant property of your entity is a filter it uses to work only on a specified set of issues; the internal value for that property might be

the filter itself.

When it is exported, the internal value will be converted into a string (the "external string") and added to the exported contents. The external string

must be instance-independent so that its meaning remains constant in any Jira instance. During the import, the reverse conversion will take place,

from the external string to the internal value.

In the case of the layout description, looking at methods in the Profields Java API it is obvious that it can be read and set as a java.lang.String. So, this

will be the type of internal values for this property. Moreover, the description of the layout is something that should be invariant in any instance of Jira

where we want to move that layout. For simple properties that have strings as internal values, whose content is invariant across different instances of

Jira and do not contain a reference to other Jira/app objects, there is a specific sub-interface of Property called StringProperty:

Property for Name

private StringProperty<Layout> buildDescriptionProperty(){

return new StringProperty<Layout>(){

@Override

public String getInternalValue(Layout layout){

// return null means "this property is empty"
return layout.getDescription();

}

@Override
publicvoidsetProperty(Layoutlayout,Strings){

layout.setDescription(s);
layoutService.update(layout);

© 2020 Adaptavist 49

Additionally, a Property has a report name that identifies it to the end user (something like description, applicable statuses, or default issue type). See

above method getPropertyName().

There is also a method to set the property on a given object (see setProperty() method). This takes as arguments, the layout that will be modified

and the new internal value of the description.

A Property also implements the method boolean isSetInCreation() that returns whether or not this property is set during object creation, as

specified by its owning CustomEntity createNew() method. If this method returns true, PC will know that it does not have to set this property after

creating a new object.

}

@Override
public String getPropertyName(){

return "description";

}

@Override
public boolean isSetInCreation(){

return true;

}

};

}

50

In this case, the method to create a layout (as seen before) sets its name and description, so the isSetInCreation() method for the

description must return true.

A property for the associated Profield

ReferenceProperty

Often, a Property of an object consists of a reference to another object or to a collection of objects in Jira. These referred objects might be built-in Jira

objects (issue types, statuses, filters, etc) or other objects which are supported by a PC extension.

This is relevant for the migration, so there is a specific sub-interface, ReferenceProperty that must be implemented for any Property that

references other objects.

ReferenceProcessor

Every ReferenceProperty has a ReferenceProcessor. This is the object that is able to convert that reference to an external string and vice

versa. It also resolves the reference and handles the cases where the reference is broken (i.e. the referred object does not exist in Jira).

ReferenceProcessor(s) will be supplied by some of the factory classes mentioned above. You should not create your own

ReferenceProcessor(s), except as a composition of ReferenceProcessor(s) provided by PC factory classes.

In the next section, we will review different types of ReferenceProperty(s) and their associated ReferenceProcessor(s):

ExtendedObjectProperty / ObjectReferenceProcessor

A ReferenceProperty whose internal value is the referenced object itself.

ExtendedMultiObjectProperty / MultiObjectReferenceProcessor

A ReferenceProperty whose internal value is a collection of referenced objects.

TranslatableReference / ParamValueTranslator

A ReferenceProperty whose internal value is a string. It may need translation to be converted into an external string or not. For example, if it

contains the ID string of the referred object, e.g. "11100", then it has to be translated during the migration to a different ID. The internal string may

contain references to one or several objects.

© 2020 Adaptavist

© 2020 Adaptavist 51

When you have to create instances of ParamValueTranslator and ReferenceMarker, you can use the technique and examples described in
the chapters about workflow and gadget extensions.

As shown in the section on workflow and gadget extensions, the integration framework facilitates composing a ParamValueTranslator to handle

complex strings from one or several simpler ParamValueTranslator(s), so this is the recommended approach if you have to handle complex

properties, for example, a JSON string that may contain IDs of several entities (like custom fields and options).

MarkableReference / ReferenceMarker

Specialization of the above, for cases where translation into an instance-independent external string is not needed. For example, a collection of group

names separated by commas, like "groupA, jira-developers, groupB".

In the case of the field item, there is a property to represent its association with a Profield. We are going to use that as an example. Looking at the

Profields Java API, you will find that there are methods to get and set the com.deiser.jira.profields.api.field.Field for a field item.

Additionally, a field item cannot refer to more than a Profield, so it fits into an ExtendedObjectProperty:

© 2020 Adaptavist 52

Reference to Profield Property in FieldViewItemEntity.java

private ExtendedObjectProperty<FieldViewWithContainer, Field> buildProfieldsRefProperty(){

return new ExtendedObjectProperty<FieldViewWithContainer, Field>(){

@Override
public ObjectReferenceProcessor<Field> getReferenceProcessor() {

// This is an ObjectReferenceProcessor to one of the entities defined in this app
return objectReferenceProcessorFactory.getObjectReferenceProcessor(profieldEntity);

}

@Override
public Field getInternalValue(FieldViewItemWithSection fieldViewItemWithSection) {

return fieldViewWithContainer.getFieldView().getField();
}

@Override
public void setProperty(FieldViewWithContainer fieldViewWithContainer, Field field) {

throw new IllegalStateException("The field of an existing FieldView should never be modified");

}

@Override

public String getPropertyName() {

 return "Profield";

}

@Override
public boolean isSetInCreation() {

return true;

}

};

}

© 2020 Adaptavist 53

Apart from the ReferenceProcessor, a ReferenceProperty is much like any other Property.

7.4 Identifiers

An Identifier is, for a given entity, a bidirectional mapping between String(s) and objects of that type. In other words, an Identifier permits finding the

object of that type given a string or finding the string which identifies a particular object. For example, the relationship between statuses and their IDs

is an Identifier. Given an ID string like "10110", it is possible to find the status with that ID, and from any given status it is easy to obtain its ID as a

string.

There are two variations of Identifiers. They can be InstanceIndependentIdentifier if the mapping would be the same in any instance of
Jira. For example, given the key of a project in Jira, it is possible to find the corresponding project. We expect that the equivalent project in a
different Jira instance will have the same key, so this mapping does not depend on a particular Jira instance. On the other hand, we can also map
projects to their ID strings (like "10202") and vice versa. However, it is most likely that equivalent projects in different Jira instances will have
completely unrelated IDs. Therefore, this mapping changes whenever we look at a different instance. This would be an
InstanceSpecificIdentifier. Any Identifier also has a report name like "ID", "name", or "key", typically derived from the property they are
based on.

You will notice the setProperty() method has not been implemented in this case, instead it throws an exception if it is invoked. The

reason is that this property is part of the identifier of a FieldViewWithContainer, and a property which is part of the identifier of an

object will never be modified for an existing object. This means its setProperty() method will never be invoked. See the section below

about cross-instance identifiers.

© 2020 Adaptavist 54

Cross-instance Identifiers

Every CustomEntity must have at least one InstanceIndependentIdentifier, returned by the method getCrossInstanceIdentifier().

This identifier will be used to map equivalent objects in different instances. For example, if this method returns an identifier based on the object name,

PC will treat entities of this type with the same name as equivalent objects in different instances. This means that during an import, if PC is bringing in an

object with name "X", two situations may occur at the destination instance:

• No object of the same entity with name "X" exists previously: then PC will create a new object with that name, and with the same properties and

children it had at the source instance.

• An object of the same entity with name "X" exists previously: then PC will modify that object so that it has the same properties and children it

had at the source instance.

A CustomEntity may have an arbitrary number of additional Identifier(s), either InstanceIndependentIdentifier or

InstanceSpecificIdentifier, returned by the methods

getOtherInstanceIndependentIdentifiers() and getInstanceSpecificIdentifiers(). Typically, these are used in
ReferenceProperty from different entities as, for example, when objects of a different entity refer to objects of this entity by their IDs.

© 2020 Adaptavist 55

<T> ParamValueTranslator getFromNewObjectType(CustomEntity<T> customEntity,
 InstanceSpecificIdentifier<T> internalRepresentation);

See methods such as this in TranslatorFactory:

com.awnaba.projectconfigurator.extensionpoints.extensionservices.TranslatorFactory

Creating identifiers from properties

Most often, identifiers will be based on one or several properties of an object. In this example, Profields will use a cross-instance identifier based on

combining their type and name. The service, IdentifierFactory, facilitates creating identifiers from object properties:

Creating an Identifier from Two Properties

private InstanceIndependentIdentifier<Field> buildNameTypeIdentifier(){
return identifierFactory.identifierFromProperties(

list-> findFieldByNameAndType(list.get(0).toString(), (FieldType)list.get(1)),
nameProperty,fieldTypeProperty);

}

private Field findFieldByNameAndType(String name, FieldType type){

List<Field> fields = fieldService.get(name);
fields.removeIf(field -> !field.getType().equals(type));
return fields.isEmpty() ? null : fields.get(0);

}

© 2020 Adaptavist 56

If a property is part of the cross-instance identifier for an entity, it is not necessary that its setProperty(...) method, actually updates the property, as it will never

be called.

The method identifierFromProperties() takes as its first argument, a Function which receives a list with the internal values for the selected
properties. The rest of the arguments are the selected properties. Their order will be the same as that used to build the lists of internal values that will

be received by the first Function.

7.5 ChildCustomEntity

Some objects in Jira cannot exist outside a larger object (a parent object). A typical example would be the components in a project. No component

can exist outside of a project. If the enclosing project is removed, then its components will also be removed. If any entity in a PC extension

exhibits this behaviour relative to any other entity, it should implement the ChildCustomEntity sub-interface.

Objects in the Profields API that are part of a Layout (like SectionView, ContainerView, and FieldView) do not have the methods to navigate up the

hierarchy to find their parent objects. To support this navigation and other issues, we have defined extended entities that combine each of these items

with a reference to the owning parent for each. The extended entities are SectionViewParent, ContainerParent, and

FieldViewWithContainer.

© 2020 Adaptavist 57

In the Profields example there are three entities that clearly meet the conditions to be treated as child entities: Section (cannot exist outside a

layout), Container (cannot exist outside a section), and Field item (cannot exist outside its container). Their corresponding entity classes will be as

follows:

Entity for Section

Being a ChildCustomEntity has some implications:

• The ChildCustomEntity i nherits from its parent, CustomEntity, the status of being configuration or data.

• Subordinate objects may be removed from the Jira destination instance, giving their parent objects the same set of children as
those in the configuration/data being imported. So, the ChildCustomEntity must implement the method

void delete(P parent, T childObject) that removes a given child object.

@Profile("pc4j-extensions")

@Component
public class SectionViewEntity implements ChildCustomEntity<SectionViewParent, Layout> {
...

© 2020 Adaptavist 58

delete() method

There must be a way to identify a child object from a String among the children of a given parent object. In the example above, the name can be

used to identify a component among the components of a known Jira project. This mapping between String and child objects, restricted to a

specified parent object, is called a PartialIdentifier. A ChildCustomEntity must have a PartialIdentifier. On the other hand, it does

not have to declare a cross-instance identifier, as a default one will be automatically generated from the parent's cross-instance identifier and its

PartialIdentifier. As in the case of the identifiers for GlobalCustomEntity, it is easy to create a PartialIdentifier from some

properties of the ChildCustomEntity. In the following example, the name of a section is used to identify it within the layout.

@Override
public void delete(Layout layout, SectionViewParent sectionViewParent) {

 updater, remove(

layout, sectionViewParent,
(sectionViewP,sectionViewBuilderList) -> sectionViewP.findMyBuilderIn (sectionViewBuilderList),
(sectionViewP,sectionViewBuilderList) -> sectionViewBuilderList,
(sectionViewBuilder,sectionViewBuilderList) -> sectionViewBuilderList.remove(sectionViewBuilder)

);

}

© 2020 Adaptavist 59

Defining a PartialIdentifier

Note that the first argument to method partialIdentifierFromProperties() is a java.util.function.BiFunction that receives as

arguments the parent object and the list of internal values of the selected properties for the object to be looked up.

Properties that are part of the partial identifier are also indirectly part of the cross-instance identifier, meaning that it is not necessary to implement

updates of those properties in their setProperty(…) method.

 private PartialIdentifier<SectionViewParent, Layout> buildPartialIdByName(){

return identifierFactory.partialIdentifierFromProperties(

(Layout layout, List<Object> singletonList) -> {

String name = (String)singletonList.get(0);
return layout.getSections().stream().

filter(section -> ((SectionViewItem) section).getName().equals(name)).
map(sectionViewItem -> new SectionViewParent(sectionViewItem,layout, layoutService)).
findFirst().orElse(null);

},

nameProperty);

}

© 2020 Adaptavist 60

Navigate to the Parent

A method must be implemented to navigate to the parent object from one of its children: P getParent(T childObject). In this example, given a

section that method must return the layout it belongs to:

Navigate to the Parent Object

7.6 Child Collections

Any CustomEntity with children must implement the method Collection<ChildCollection<?,T>> getChildCollections(). Each

ChildCollection returned by this method represents a collection of child entities of the same type. This collection has methods to:

• Identify the ChildCustomEntity of the children: getChildCustomEntity()

• Find the collection of child objects for a given parent: getSubordinates(P parentObject)

@Override
public Layout getParent(SectionViewParent sectionViewParent) {

return sectionViewParent.getParent();

}

© 2020 Adaptavist 61

As shown in this example, a ChildCustomEntity can have its own children!

In the example below, ContainerViewEntity.java specifies that a container may contain field items:

Create a ChildCollection

private ChildCollection<FieldViewWithContainer, ContainerViewParent> buildFieldViewItemChildren(){
return new ChildCollection<FieldViewWithContainer, ContainerViewParent>(){

@Override
public ChildCustomEntity<FieldViewWithContainer, ContainerViewParent> getChildCustomEntity() {

return sectionViewEntity;
}
@Override
public List<FieldViewWithContainer> getSubordinates(ContainerViewParent containerViewParent) {

return getFieldViewItems(containerViewParent);

}
};

}

© 2020 Adaptavist 62

Sorting a ChildCollection

Often, the order of some children within the parent object is relevant. In this example, the sections that make up a layout are in a specific sequence. If that
sequence changed during the migration, end users would see a different layout.

If you need to specify that the order of some children is relevant, so that it must be preserved during the migration, follow these steps.

First, make the children collection implement SortedChildCollection<T, P>, which is a sub-interface of ChildCollection<T, P>.

This sub-interface requires implementing the additional method void sort(List<String> inputList, P parentObject). This method is the one

that actually sorts the sections within a layout. Bear in mind that the argument inputList is a list of the partial identifiers of the children in the desired

order. It is guaranteed that when this method is called all the children have already been created.

Finally, consider that the original order of the children at the source instance is given by the list returned by method List<T> getSubordinates(P
parentObject) in ChildCollection. Make sure that this method returns the children list in the right order!

 @Override

 public void sort(List<String> inputList, Layout layout) {

updater.update(layout, null,

 (ignoredItem, builderList) -> builderList,

 builderList -> sortAs(builderList, inputList));

 }

 private void sortAs(List<SectionViewBuilder> builderList, List<String> inputList) {

builderList.sort(Comparator.compatingInt(o -> inputList.index)f(o.getName())));
}

builderList.sort(Comparator.comparingInt(o -> inputList.indexOf(o.getName())));

}

@Profile("pc4j-extensions")

@Component

public class SortedSectionChildCollection implements SortedChildCollection<SectionViewParent, Layout> {

…

© 2020 Adaptavist 63

public class LayoutProjectsProperty implements ExportTriggerProperty<Layout, Project, Project> {
...

@Override

public ReferenceProcessor<Project> getReferenceProcessor() {

return objectReferenceProcessorFactory.getObjectReferenceProcessor(Project.class);

}

...

7.7 ExportTriggerProperty

If an app defines new object types, it is likely that these objects will be used somewhere else in Jira. For example, imagine a test management app that

creates new entities like test case, test run, or test plan. In this case, a project might use one or more test plans. This implies that, when writing a PC

extension for this test management app, we need to specify this use relationship between projects and test plans. This relationship is relevant because

we probably want to migrate a project's test plans when the project is migrated. In fact, this is the reason we started writing an extension for PC!

In the Profields example, a layout is associated to a project. It seems natural that when a project configuration is moved, if that project is using a

layout, we will want that layout to be moved too as part of that project configuration. This is achieved with an ExportTriggerProperty.

Each instance of this interface represents one type of relationship between an entity not defined in this PC extension (like projects) to an entity defined

within it (layouts).

ExportTriggerProperty i s a sub-interface of ReferenceProperty, so it will implement methods like:

LayoutProjectsProperty

 @Override

 public List<SectionViewParent> getSubordinates(Layout layout) {

 return layout.getSections().stream().

 map(section -> new SectionViewParent(section, layout, layoutService)).

 collect(Collectors.toList());
}

}

© 2020 Adaptavist 64

And it must implement two additional methods:

• String getLinkedEntityName() specifies the "entity name" of the entity (project) related to layouts. Typically, this will be one of the

constants defined in class ObjectAlias.
• Collection<T> getRelatedObjects(L linkedEntity), this method must return the collection of layouts that are linked to a given project.

LayoutProjectsProperty

public class LayoutProjectsProperty implements ExportTriggerProperty<Layout, Project, Project> {
...

@Override
public String getLinkedEntityName(){

return ObjectAlias.PROJECT;
}

@Override
public Collection<Layout> getRelatedObjects(Project project){

return Collections.singletonList(layoutService.getByProject(project));

}

...

© 2020 Adaptavist 65

8 Hints for Testing PC Extensions

8.1 Test the Actual Migration

Quite obviously, it is necessary to test that those configuration objects are actually moved to a different instance of Jira. At the end of the day, that is

what 99% of the users will want the extension to do for them.

The following steps may help you to test this in a relatively fast way:

Create the configuration objects you want to move in your development instance

Going back to the gadget extension example, you would create a dashboard that contains a gadget of type Show Saved Filter with Columns and

configure it with a valid filter.

Remember...

Functionally speaking, PC allows the migration of projects with all their configuration or data. This means that PC, when asked to export a group of projects, will

include in the export file those projects plus all the objects that are directly or indirectly referenced by them. For example, a project might use a workflow scheme

(direct reference) and the workflow scheme might use a workflow that in turn references a custom field (indirect references). All three (the workflow scheme, the

workflow, and the custom field) will be exported alongside the project. On the other hand, a workflow that is not used by any of those projects will not be exported.

The same applies to the objects defined by PC extensions. If they are directly or indirectly part of the project configuration/data, they will be exported, otherwise they

will be ignored. This means that, in order to be included in the migration, your app objects can be related directly to the project (as in the example) or indirectly

through another object that is referenced by the project (like a custom field or a workflow which are used by that project).

This is the default process implemented by PC. However, there are situations when you would like to export all entities of some kind, no matter what explicit

relation they may have to the exported projects. This typically happens with entities that represent globally available objects.

In this case, make this entity implement NonProjectConfigCustomEntity<T>, which is a sub-interface of GlobalCustomEntity<T>. This means your

class will have to implement method Collection<T> findAll(Set<String> exportedProjectKeys). This method must return the collection of

objects of this type that must be exported. Note that the set of keys of the projects being exported is supplied, however this argument can be ignored (and

we expect this to happen quite often!).

© 2020 Adaptavist 66

....

<name>Test dashboard</name>

<layout>AA</layout>

<gadget>

<type>rest/gadgets/1.0/g/com.ja.jira.plugin.searchrequest:sswc-gadget/gadget_wc.xml</type>

<column>0</column>

<row>0</row>

<color>color1</color>

<parameter>

<key>columnNames</key>

<value>issuetype@@issuekey@@summary@@priority</value>

</parameter>

<parameter>

<key>filterId</key>

<value>admin@@Due this week (RR)</value>

Export a configuration containing those objects

Export these objects and check that the export completed without errors or warnings. If you look at the part of the XML file that corresponds to those

objects you should notice that instance specific references (usually, all those that use IDs to refer to other objects) have been rewritten as instance

independent strings. Continuing with the gadget example, you would see a description like:

Exported file

© 2020 Adaptavist 67

Remember that before the extension existed, this was exported with a filter ID, which would have been useless when moved into a different instance.

Now that has been replaced by the filter owner and name, which will be used at the destination instance to rebuild the reference correctly.

Delete the configuration object and its dependencies and simulate the import of the exported file

To save the trouble of having two different Jira instances for testing, you could remove the created gadget and the filter it refers to, from the

development instance and then import the exported file into the same instance again.

</parameter>

<parameter>

....

© 2020 Adaptavist 68

Run an import simulation first. You should see something like this (expanding the sections which are relevant to those objects):

Figure 9

Note that there are two changes planned to create both the missing gadget and the missing filter. Note also that the details for the gadget refer to the
filter by its owner and name, not by its ID.

© 2020 Adaptavist 69

Disable creation of the referred object and recalculate

We know that the operations to create the gadget and the filter are logically related: if the filter were missing then it would not be possible to create the

gadget, as it requires that filter to be properly configured. You can test this in the import simulation. Disable the creation of the filter by clicking the

green action icon. It will be greyed out. Click the Recalculate button. The results appear similar to the following:

Figure 10

Note that after disabling the changes on filters (they are greyed out), creation of the gadget has a red box (this means an error) that says a filter with
the required owner and name cannot be found.

© 2020 Adaptavist 70

Enable operations and run the actual import
Until now nothing has changed in Jira. You are still working with a simulation; it is like a preview of the changes but none of them have actually
occurred.

In the next step, re-enable changes to the filters and click Apply Configuration. This will apply the changes to your source Jira instance. The tree with
the actual changes will be displayed:

Figure 11

© 2020 Adaptavist 71

Verify that the changes displayed are what you expect. They should be the same as those previewed in the simulation. Finally, check the dashboard in

Jira and verify that the new gadget has been created with the correct configuration. Make sure the gadget is configured for a new filter, also created by

the import, called "Due this week (RR)" and owned by user "admin".

8.2 Use the Object Dependencies Report

The Object Dependencies report is a feature of Project Configurator that analyses dependencies between configuration objects in any instance of Jira.

In the case of the workflow examples discussed in this guide, you will notice the following "used by" relationships exist:

• User "jsmith" is used by the "New service workflow" (as it is used in a post-function of the workflow)

• Custom field "Release cut-off date" is used by the "New service workflow" (as it is used in a condition of the workflow)

Integrations with other apps are designed to work seamlessly with this feature. So, if you run the Object Dependencies report, you will see these

relationships shown in the report, for example:

Figure 12

© 2020 Adaptavist 72

The Object Dependencies report includes only those objects that are directly or indirectly used by any of the projects in the instance. This means that these will

not appear: Objects that are exclusively used by dashboards, filters or Agile boards, and the relations where any object is used by any dashboard, filter or Agile

board. In general, any object which is not used by any project (like an inactive workflow).

Note this can be quite useful for testing references like this one to a username, that are implemented as a WorkflowReferencePoint or

a GadgetReferencePoint. In these cases, including the references in the integration of the app with Project Configurator is useful to the extent it makes

Project Configurator aware of the dependency between the related objects. Verifying the "Object dependencies report" is a fast and simple way to

check this is working as expected.

8.3 Pro Tip: Create the Extension in Two Stages

Creating the extension in two stages simplifies both the implementation and the testing.

When creating a custom entity extension, you can exclude from the initial implementation the methods that actually create or delete objects or set any

of its properties. These methods will only be used during a real import, so the following operations should work correctly for the related custom entities,

even when those methods are not yet implemented:

• Export

• Object dependencies report

• Import conflict detection

• Simulated import

This lets you implement partially the support for some custom entity, test that partial implementation and later, with the confidence that a substantial

part of the extension is already correct, proceed to complete the "create / delete / update" methods.

8.4 Use the Jira Log if Necessary

It is possible to extract a lot of useful information from the Jira log file. If this is required, then set the log level to DEBUG for the

package com.awnaba.projectconfigurator (see Change Logging Levels in Jira Server to learn how to temporarily change the log level for specific packages in

Jira).

https://confluence.atlassian.com/jirakb/change-logging-levels-in-jira-server-629178605.html

© 2020 Adaptavist 73

After setting the log level to DEBUG, run any operation with Project Configurator and you will see the increased content in the log file.

For example, in the case of an export with the workflow extension discussed in this guide, you will see entries like these:

...

2020-05-06 14:41:30,684+0200 http-nio-2990-exec-11 DEBUG admin 881x49361x1 16cohu0 0:0:0:0:0:0:0:1 /secure/project-export!export.jspa

[c.a.p.extensionpoints.management.ExtensionActivatorImpl] Starting extensions

2020-05-06 14:41:30,684+0200 http-nio-2990-exec-11 DEBUG admin 881x49361x1 16cohu0 0:0:0:0:0:0:0:1 /secure/project-export!export.jspa

[c.a.p.extensionpoints.management.ExtensionActivatorImpl] Enabling PC extensions in plugin: com.adaptavist.projectconfigurator.wes4jextension

2020-05-06 14:41:30,685+0200 http-nio-2990-exec-11 INFO admin 881x49361x1 16cohu0 0:0:0:0:0:0:0:1 /secure/project-export!export.jspa

[c.a.p.s.s.dynamic.contexts.GeminiOsgiBundleXmlApplicationContext] Refreshing

GeminiOsgiBundleXmlApplicationContext(bundle=com.adaptavist.projectconfigurator.wes4jextension, config=bundle://232.0:1/META-INF/pc4j-

extensions/spring/profile-pc4j-extensions.xml): startup date [Wed May 06 14:41:30 CEST 2020]; parent:

NonValidatingOsgiBundleXmlApplicationContext(bundle=com.adaptavist.projectconfigurator.wes4jextension, config= osgibundle:/META-

INF/spring/*.xml)

...

2020-05-06 14:41:30,739+0200 http-nio-2990-exec-11 WARN admin 881x49361x1 16cohu0 0:0:0:0:0:0:0:1 /secure/project-export!export.jspa

[c.a.projectconfigurator.wes4jextension.spring]

Spring context started for bundle : com.adaptavist.projectconfigurator.wes4jextension id(233)

v(1.0.0.SNAPSHOT) file:/Users/pepemaranon/Workspaces/jira-project-config-plugin/project-configurator-plugin/amps-standalone-jira-

8.8.1/target/jira/home/plugins/installed-plugins/plugin_3339388906409322341_wes4jextension-1.0.0-SNAPSHOT.jar

If you want to debug the Spring wiring of your code then set a DEBUG level log level as follows. [This is a dev.mode only message.]

log4j.logger.com.adaptavist.projectconfigurator.wes4jextension.spring = DEBUG, console, filelog

...

© 2020 Adaptavist 74

2020-05-06 14:41:31,176+0200 JiraTaskExecutionThread-5 DEBUG admin 881x49361x1 16cohu0 0:0:0:0:0:0:0:1 /secure/project-export!export.jspa

[c.a.p.extensionpoints.management.ExtensionActivatorImpl] Found 2 implementations of extension entities for plugin

com.adaptavist.projectconfigurator.wes4jextension

...

2020-05-06 14:41:32,514+0200 JiraTaskExecutionThread-5 DEBUG admin 881x49361x1 16cohu0 0:0:0:0:0:0:0:1 /secure/project-export!export.jspa

[c.a.p.adapters.workflow.WorkflowTranslator] XPath provided by extension: //function[arg[@name='class.name' and

(text()='de.codecentric.jira.postfunction.SetAssigneeToSpecificUserPostFunction')]]/arg[@name='USERNAME_VALUE_FIELD']/text()

2020-05-06 14:41:32,514+0200 JiraTaskExecutionThread-5 DEBUG admin 881x49361x1 16cohu0 0:0:0:0:0:0:0:1 /secure/project-export!export.jspa

[c.a.p.adapters.workflow.WorkflowTranslator] Node for this occurrence: 3 #text admin

2020-05-06 14:41:32,514+0200 JiraTaskExecutionThread-5 DEBUG admin 881x49361x1 16cohu0 0:0:0:0:0:0:0:1 /secure/project-export!export.jspa

[c.a.p.adapters.workflow.WorkflowTranslator] XPath found one occurrence: admin

2020-05-06 14:41:32,514+0200 JiraTaskExecutionThread-5 DEBUG admin 881x49361x1 16cohu0 0:0:0:0:0:0:0:1 /secure/project-export!export.jspa

[c.a.p.adapters.workflow.WorkflowTranslator] Found reference by string: admin

2020-05-06 14:41:32,514+0200 JiraTaskExecutionThread-5 DEBUG admin 881x49361x1 16cohu0 0:0:0:0:0:0:0:1 /secure/project-export!export.jspa

[c.a.p.adapters.workflow.WorkflowTranslator] Finished processing this extension

2020-05-06 14:41:32,514+0200 JiraTaskExecutionThread-5 DEBUG admin 881x49361x1 16cohu0 0:0:0:0:0:0:0:1 /secure/project-export!export.jspa

[c.a.p.adapters.workflow.WorkflowTranslator] XPath provided by extension: //condition[arg[@name='class.name' and

(text()='de.codecentric.jira.condition.DateComparisonCondition')]]/arg[@name='FIELD_ID']/text()

2020-05-06 14:41:32,515+0200 JiraTaskExecutionThread-5 DEBUG admin 881x49361x1 16cohu0 0:0:0:0:0:0:0:1 /secure/project-export!export.jspa

[c.a.p.adapters.workflow.WorkflowTranslator] Node for this occurrence: 3 #text 10001

2020-05-06 14:41:32,515+0200 JiraTaskExecutionThread-5 DEBUG admin 881x49361x1 16cohu0 0:0:0:0:0:0:0:1 /secure/project-export!export.jspa

[c.a.p.adapters.workflow.WorkflowTranslator] XPath found one occurrence: 10001

2020-05-06 14:41:32,515+0200 JiraTaskExecutionThread-5 DEBUG admin 881x49361x1 16cohu0 0:0:0:0:0:0:0:1 /secure/project-export!export.jspa

[c.a.p.adapters.workflow.WorkflowTranslator] Finished processing this extension

...

© 2020 Adaptavist 75

Note the following details:

• /secure/project-export!export.jspa is the relative URL where the export was launched from

• There are entries that mark when Project Configurator starts searching for extensions and a specific one for each extension

• There are also entries that show when the dynamic Spring context for each extension is started

• Other entry show that this workflow extension defines two extension points (one for the condition and another for the post-function)

• For each extension point, it is reported when its processing begins and ends and the number and content of occurrences found,
for each workflow

Exploring the log files in this way can be useful when the extension appears not to work or even that it does not exist. This is often caused by a problem that
prevents the starting of its dynamic Spring context. In these cases, Project Configurator will simply ignore the offending extension and continue with the rest
of the operation.

	1 Introduction
	1.1 Intended Audience
	Assumptions

	1.2 How this Guide is Organised

	2 Why Create a PC Extension
	2.1 About PC
	2.2. Benefits of Creating an Extension
	Benefits for the Extension Developer

	3 Types of PC Extensions
	3.1 Workflows
	3.2 Dashboard Gadgets
	3.3 New Custom Entities

	4 Common Features of Extensions
	4.1 How to Implement Extensions
	4.2 How to Identify a PC Extension
	4.3 Version Compatibility
	4.4 Maven Dependencies
	4.5 Importing Packages
	4.6 The Hollywood Principle
	4.7 Welcome Lazy Developers!
	4.8 How to Create Objects in an Extension
	4.9 How to Inject PC Dependencies into Your Extension

	5 Workflow Extensions
	Step 0: Check if the workflow app is already supported
	Step 1: Create the workflow feature and export its XML descriptor
	Step 2: Implement interface HookPointCollection
	Step 3: Implement the workflow extensions
	a. Date Compare condition Analyze
	Define location
	Define the content of the reference
	b. Assign specific user post-function
	Analyze
	Define location
	Define the content of the reference

	6 Dashboard Gadget Extensions
	Step 1: Create the gadget feature and export it with PC
	Step 2: Implement interface HookPointCollection
	Step 3: Implement the gadget extension Analyze
	Define location
	Define the content of the reference

	7 Custom Entity Extensions
	7.1 Have a Logical Model of the Information you Want to Support
	7.2 GlobalCustomEntity
	Names for the Custom Entity
	Creating New Objects
	Configuration or data

	7.3 Properties
	A Property for the Description
	A property for the associated Profield

	7.4 Identifiers
	Cross-instance Identifiers
	Creating identifiers from properties

	7.5 ChildCustomEntity
	7.6 Child Collections
	7.7 ExportTriggerProperty

	8 Hints for Testing PC Extensions
	8.1 Test the Actual Migration
	Create the configuration objects you want to move in your development instance
	Export a configuration containing those objects
	Delete the configuration object and its dependencies and simulate the import of the exported file
	Disable creation of the referred object and recalculate
	Enable operations and run the actual import

	8.2 Use the Object Dependencies Report
	8.3 Pro Tip: Create the Extension in Two Stages
	8.4 Use the Jira Log if Necessary

